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FOR GARNAUTS

ELF-PROPELLED VEHICLES are
designed and built today on a
pyramid of mathematics. Num-
bers tell the story. Consequent-
ly, every car enthusiast contin-
ually runs into simple mathe-
matics problems (generally con-

nected with performance) that scream

for immediate solution.

Frankly, however, 1 was a little
hesitant when the Car Life editors
asked about this story. Formulas are
a dime a dozen. Who has the ambition
to work them out “longhand?” I
wouldn’t consider doing it, myself. The
slide rule is the only answer if you
want to really work on “car math.”
I've often thought it would be quicker
to learn to work a slide rule than to
work out one lengthy problem with
pencil and paper. A decent slide rule
represents a $5 to $30 investment that
will last a lifetime.

Car enthusiasts frequently run into
problems of piston displacement. The
basic formula for figuring it is: Bore X
bore X 0.785 X stroke X number of
cylinders. By squaring the bore and
multiplying by 0.785 you find the area
of one piston top. Then multiply by
stroke length to get the displacement
of one cylinder—then by the number
of cylinders to get the total.

Actually, the problem that comes up
most frequently is how to figure the
displacement when the bore and/or
stroke are increased. There are sim-

Stroke increases are. easier. Here dis-
placement is directly proportional to
the stroke. Just divide new stroke by
old stroke, and multiply by original
displacement. If the original displace-
ment is 354 cu. in. and stroke has been
lengthened from 3.375 to 3.750, then
3.750/3.375 = 1.111: and 1.111 X
354 = 393 cu. in. If we have a prob-
lem where the bore and stroke are in-
creased at the same time, it’s easier to
figure it with the original formula
above.

The volume of a combustion cham-
ber can be figured by dividing the dis-
placement of one cylinder by the com-
pression ratio minus 1. Thus a V-8 en-
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A Slide Rule Could Be
the Motorist's Best Friend

gine of 327 cu. in. has 327/8 = 40.9
cu. in. per cylinder. And the chamber
volume with a compression ratio of
9.5:1 would be 40.9/8.5 = 4.81 cu. in.
Cubic inches can be converted to cubic
centimeters by multiplying by 16.4 (as
there are 16.4 cc per cu. in.). Thus
the cc volume here would be 16.4 X
4.81 = 78.9 cc.

Sometimes we want to know how
much to mill off a cylinder head to
bring the compression ratio up to a
certain point. But we can't accurately
determine the area of the combustion
chamber opening without special in-
struments. So, we can get a rough idea
if we can estimate this area. (Try to

HANDY FORMULAS

CORRECTED SPEED =

3600

time in sec. for one mile

ROAD SPEED = engine rpm x tire diameter

336 x gear ratio

ENGINE RPM = 336 x gear ratio x mph

tire diameter

ENGINE DISPLACEMENT = bore x bore x 0.785 x stroke x no. cyl.

DISPLACEMENT

ple ways to do this. For instance, dis-
placement is proportional to the square
of the bore: Divide the overbore by
the original bore, square this number,
then multiply by the original displace-
ment. For example: your engine has
360 cu. in. and you have increased the
bore from 4.00 to 4.125 in. Thus,
4.125/4.00 = 1.031; then 1.031 X
1.031 = 1.064; and 1.064 X 360 =
383 cu. in.

INCREASES =( overbore
o

2
W)X orlglna/ dlsp/acemenf

new stroke
old stroke

x original displacement

COMBUSTION CHAMBER VOLUME = displacement
no. of cyl.
compression ratio —1
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picture it as an equivalent rectangle
and multiply length by width.) Then,
obviously, the volume removed by
milling would be this area times the
amount milled off. Also, it is necessary
that the piston comes up very close to
the top of the block to make this
method applicable. No deep deck
clearances. But let’s assume that we
want to mill enough off to raise the
compression ratio of the above 327-
cu. in. engine from 9.5 to 10.5:1. Now
the required chamber volume with
10.5 ratio would be 40.9/9.5 = 4.30
cu. in. When we subtract this from the
original volume of 4.81 cu. in. we
come up with 4.81—4.30 = 0.51 cu.

in. This is the volume that has to be -

milled out of the chamber. If we esti-
mate the chamber opening area as, say,
7.6 sq. in., then we must mill off
0.51/7.6 = 0.067 in.

Another frequent problem involving
compression ratio is how much the
true ratio is raised when the piston dis-
placement of the engine is increased.
(Since this ratio is determined by both
the cylinder volume and chamber vol-
ume, any increase in cylinder size
without a corresponding increase in
chamber size will raise the ratio.) A
simple way to do this one is merely to
divide the increased displacement fig-
ure by the original displacement, then
multiply by the original compression
ratio minus 1. This product, plus I,
will be the new compression ratio.
Let’s say we increase displacement
from 327 to 352 cu. in., and the origi-
nal ratio is 9.5:1. Thus 352/327 =
1.077, then 1.077 X 8.5 = 9.15. The
final ratio is 9.15+1 = 10.15:1.

It's frequently handy to figure the
engine rpm at a given road speed with
a given gear ratio and tire size. Prob-
ably the simplest way to do this is to
work with actual tire rolling diameter,
which you can readily measure. Some
error is introduced by tire expansion at
high speeds. But this can be partially
compensated for by measuring the
overall standing diameter only for
speeds up to maybe 75 mph. For high-
er speeds measure the free radius of
the tire from the hub center to the
top—then double this to get an idea
of the effective rolling diameter when
the tire has expanded under high cen-
trifugal forces. (This is probably only
true at speeds over 100 mph; you
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could use an intermediate value be-
tween 75 and 100.)

The formula for figuring rpm is:
336 X gear, ratio X mph divided by
tire diameter. For example, with a tire
diameter of 28 in., axle gear ratio of
3.36 and the rpm at 75 mph, road
speed would be 336 X 3.36 X 75/28
= 2680. Of course this formula can be
used for the other forward gears by
using the overall gear ratio in that gear
—obtained by multiplying the axle
ratio by the ratio in the transmission.
Thus with the rpm at 75 mph and this
same axle ratio and tire size. but in
3rd gear (4-speed transmission) with a
1.41:1 ratio. we would use the overall
ratio of 3.36 X 1.41 = 4.74:1 in the
formula. This resulting rpm would be
3780. In fact we could have gotten
this same answer by merely multiply-
ing the rpm at 75 mph in high gear
(2680) by the transmission ratio in 3rd
(1.41). and would come up with the
same 2680 X 1.41 = 3780 rpm.

This gives us a clue to this business
of figuring the rpm drop when the
gears are shifted. This is a very simple,
straightforward problem. Let’s say we
have the new Chevrolet 4-speed trans-
mission with ratios of 2.56 (low), 1.91,
1.48 and 1.00, and we shift at 5500
rpm. Thus on the shift from Ist to 2nd
the rpm will drop to 1.91/2.56 X
5500 = 4100. On the 2nd-to-3rd shift
it will drop to 1.48/1.91 X 5500 =
4260. On the 3rd-to-4th it would drop
1.00/1.48 X 5500 = 3720. It's just a
matter of dividing the transmission
ratio in the next higher gear by the
ratio we're shifting from, and then
multiplying by the rpm at shift point.

Another frequently needed answer
is the road speed at a given engine
rpm, with a given overall gear ratio
and tire diameter. In this case we can
just convert the above formula. That
is, this road speed would be: rpm X
tire diameter divided by 336 X gear
ratio.

For example, let’s figure the rpm in
low gear with the above Chevrolet
4-speed at an engine speed of 5500
rpm, with 3.70 axle gears and 28-in.
tires. The overall ratio would be 3.70
X 2.56 = 9.47:1. Then this answer
would be: 5500 X 28/336 X 9.47 =

48.4 mph. The car speeds in the higher -

gears could be readily figured by di-
viding ratios and multiplying by 48.4

mph. The car speed in 2nd gear at
5500 rpm would be 2.56/191 X
48.4 = 64.9 mph. In 3rd gear, 2.56/
1.48 X 48.4 = 83.7 mph.

The swift increase of freeway mile-
age with well-defined mile markers
along the sides has made it very con-
venient and easy to determine a car’s
speedometer error. This is the way to
do it: If we want to determine the
error, say, at 60 mph, the car is driven
for the one mile distance at an exact
60 mph indicated on the speedometer,
and timed carefully with a stop watch.
This 60 mph calibration is very easy.
because one mile at this true speed
takes exactly 60 sec. Thus every sec-
ond off 60 sec. on the watch is ap-
proximately 1 mph error on the
speedo. For instance if the watch says
63 sec. after you have traveled the
mile, the speedo is reading about 3
mph fast. It has taken longer than one
minute to go the mile, so the true
speed is actually about 57 mph.

A more accurate way to determine
the true speed is to divide the seconds
required to go one mile into 3600.
Thus 3600/63 = 57.15 mph. This
extra accuracy is probably not re-
quired for the 60-mph calibration. But
we'll need the formula for other
speeds. Let’s say we want to determine
the error at 80 mph. The watch says
46.6 sec. Thus the true speed is 3600/
46.6 = 77.2 mph. The speedometer is
a bit less than 3 mph fast at 80 mph.
Thus a true 80 mph would call for
about 83 indicated. We can check this
by timing the car for a mile at an
exact 83 mph indicated. The stop watch
should stop at just about 45 sec.,
which is the time required for the mile
at a true 80 (this can be determined by
dividing 3600 by 80, to get 45).

Caution: When timing between mile
markers on a freeway try to avoid
using road sections with curves. Ap-
parently they measure these distances
right down the centerline of the road,
so a car would have to straddle the
center to get accurate distances around
curves—whereas we can stay in the
right lane on the straightaway. This
may seem like a small factor: but we
have had a lot of trouble getting con-
sistent speedometer calibrations on
curved roads.

Car Life readers should know that
there is no simple equation with which



we can calculate the horsepower re-
quired to move a given car down a
level road at a given speed. There are
too many factors involved, and they
are related to each other and to car
speed in complex ways. However. we
can still do a little generalizing. For
instance, we can assume average values
for the wind drag coefficient and drive-
line efficiency, as these values don’t
vary widely on the average passenger
and sports car. Tire rolling resistance
will generally run 40 to 50% of wind
drag in the range from 90 to 150 mph
(with typical tire pressures). We can't
generalize much on frontal area al-
though it is closely proportional to the
car height X width. Thus here is a
very “generalized” equation for esti-
mating car horsepower requirements
at various speeds on a level road:

_ height x width x mph?
bhp = === 000,000

As an example, let’s estimate the
power for a typical American medium
compact car with height of 54 in. and
width of 73 in. At a road speed of, say,
110 mph, the bhp required would be:
54 X 73 X 110 X 110 / 36,000,000
= 145 bhp. A small sports car, 50 X
55 in., at 80 mph would require 39
bhp by this formula. Sound reason-
able?

The above formula can be converted
to give a top speed estimate for a
given car with a given amount of
horsepower—though this would re-
quire the extraction of a cube root,
which is strictly slide rule stuff. Here’s
the conversion:

ik = \3/bhp x 36,000,000
P height x width.

The above small sports car (50 X 55
in.) with, say, 110 bhp at the clutch,
should have a top speed of about:

_ J3/110 x 36,000,000
mph = N =355 53

Keep in mind that the bhp figures
used in this formula are supposed to
be true bhp available at the clutch.
Some foreign engines are rated with
accessories and installation losses in-
cluded, so we can generally take good
stock in those advertised ratings. But
beware of the SAE ratings on Detroit
engines. These ratings include no ac-
cessories, a manual spark advance and
mixture control, open exhaust, and
then correction to 60° F. air tempera-
ture. We can generally knock off any-
where from 15 to 40% from the ad-
vertised rating to get true bhp at the
clutch. For instance, for a full-sized
car (55 X 78 in.), a true top speed of
115 mph is common with 300 rated
bhp. This figures out to 182 bhp by
the above formula.

It is also obvious from this formula
that the power required to move a car

= 113'mph.

increases roughly as the cube of the
speed. Thus, to increase our top speed
from, say, 100 to 120 mph, we would
need to increase the power by 1.2 X
1.2 X 1.2 = 1.728 times. In other
words, a 73% increase in bhp is need-
ed to get the extra 20 mph. This is
why high cruising speeds require so
much fuel—and why the true 150 mph
sports car is a rare bird.

The classic Newtonian acceleration
formulas are not much good in auto-
motive work. They all assume a con-
stant rate of acceleration and this con-
dition is pretty unusual on the road or
drag strip. The acceleration rate is con-
tinually changing. Thus the classic
formulas for distance covered in a
given time and velocity at the end of
a stated time period just don’t hold.

However, research has uncovered
one rather interesting relationship that
lends itself to slide-rule analysis. That
is, the terminal speed at the end of a
standing-start Y4 -mile increases as the
cube root of the bhp-to-weight ratio.
And, of course, if weight stays con-
stant, the speed will increase as the
cube root of the bhp. Thus, if true
bhp is increased by 20%, say, the in-
crease in terminal speed would be
proportional to the cube root of 1.20
or about 6% . Or, let’s say we fiddle
with the engine and get the trap speed

up from 82 to 84 mph. This is an in-
crease of 84/82 = 1.024 times. When
1.024 is cubed, the percentage increase
in power is about 8% .

Trap speed is inversely proportional
to the cube root of weight. If the
weight is reduced 15% , we would take
the cube root of 0.85. This equals
0.947—which is what we would divide
the original trap speed by. An origi-
nal speed of 82 mph would be scaled
up to 82/0.947 = 86.6 mph.

Then there’s that elusive Car Life
Wear Index which seems to bother
new readers. To determine this, an
admittedly arbitrary measure of po-
tential service life, take engine revolu-
tions per mile X stroke X 2, divide by
12 to get piston travel in feet per mile;
then multiply piston travel X engine
revolutions per mile and divide by
100,000 to get the workable figure
used as Wear Index. For example, that
327 Chevrolet with a 3.36 axle ratio
would work out 2555 X 3.25 X 2 =
16,606/12 = 1383; then, 1383 X
2555 = 3,533,565/100,000 = 35.3
Wear Index. The lower this resulting
index, the less will be the engine wear,
while a higher figure means more
friction.

Well, this is getting pretty sticky . . .
the best advice is still to get busy with
a slide rule. [}
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